Contributed	Name	Institution, STEM	Title	Abstract	Co-Authors
Poster		discipline			
Session and					
Poster					
Number					
(1.X or 2.Y)					
	Timothy Abell	Miami University, Chemistry	Students' Ideas of Enthalpy and Entropy when Ionic Salts Dissolve	Research has shown that students struggle with explaining how the dissolving process and precipitation occur and what the resulting products look like at the particulate level. It has also been shown that students hold many misconceptions surrounding the abstract concepts of enthalpy and entropy. In our study we are investigating how students apply their knowledge of enthalpy and entropy to explain the dissolving process. Semi-structured interviews using hands on dissolution and precipitation reactions were conducted to elicit students' ideas about enthalpy and entropy changes during these processes. These tasks included the observation of exothermic and endothermic dissolutions. Students' explanations ranged from mixing two aqueous solutions. Students' explanations ranged from discussing enthalpy and entropy changes of the system through	Stacey Lowery Bretz Miami University
1 01				only mathematical equations. Findings will be presented through the	
1.01	Gregory Allen	Miami University	Connecting students'		Alexandra Glinos Miami
		Chemistry	misconceptions about	Students generate misconceptions and incorrectly connect concepts	University
			bonding concepts.	when they are trying to make sense of new information. The Bonding	Stacev Lowery Bretz. Miami
			acid/base reactions, and	Representations Inventory (BRI) Acid Base Concent Inventory	University
			redox reactions	(ABCI) and Redox Concept Inventory (ROXCI) have previously been	
				used to measure the prevalence of specific misconceptions in their	
				specific subject. The three concept inventories use one two-tiered	
				questions to identify students' understanding, reasoning, and	
				common misconceptions. Our present study administered all three	
				concept inventories to approximately 900 general chemistry students	
				at a large midwestern university to investigate the relationships	
				among students' understandings and misconceptions about bonding	
				concepts, acid/base reactions, and oxidation-reduction reactions. A	
				confidence scale was added to further characterize the robustness of	
				each misconception. Connections between misconceptions were	
1.02				analyzed using cluster analysis and results will be presented.	

	Zahilyn Roche A	Miami University	Students' Ideas about	Previous research highlights students' difficulties with gaining a	Stacey Lowery Bretz (Miami
		, Chemistry	Probability, Energy	conceptual understanding of the electronic structure of the atom. The	University)
		-	Quantization and	concepts of probability and quantization have been proposed as key	
			Electronic Structure	factors students must learn in order to have an understanding of the	
				atomic structure. Additionally, research in mathematics education and	
				psychology has investigated how students' ideas about probability	
				influence their reasoning, resulting in inconsistent reasoning across a	
				variety of problems. As part of a larger study, we are investigating	
				general and physical chemistry students' understandings of	
				electronic structure with regards to probability and energy	
				quantization. We also seek to compare our findings about students'	
				ideas of probability to the misconceptions reported in mathematics	
				education and psychology. The end goal of our research is to	
				develop a concept inventory (CI), which could be used by	
				practitioners to identify their students' misconceptions about the	
				electronic structure of the atom. We conducted semi-structured	
				interviews with general and physical chemistry students asking them	
				to compare multiple representations of the atomic orbitals in helium	
				and carbon atoms, along with guestions targeting students'	
				interpretations of probability to elicit their understanding. Preliminary	
1.03				findings will be presented.	
	Sarah Andrews	University of	Life Science Majors'	One challenge of efforts to improve quantitative instruction in	Melissa L. Aikens, University of
		New Hampshire,	Attitudes Toward Using	undergraduate biology courses is negative student attitudes toward	New Hampshire, Dept. of
		Biology	Math in Biology	math, which may impact a student's performance on quantitative	Biological Sciences
				tasks. However, little empirical evidence exists regarding	
				undergraduates' attitudes toward using math in a biology context	
				(math-biology). To characterize math-biology attitudes among life	
				science majors, we administered the previously validated Math-	
				Biology Values Instrument (MBVI) online to 777 life science majors at	
				11 institutions across the US. This instrument measures students'	
				interest in using math to understand biology, perceptions of the	
				usefulness of math for a life science career (utility value), and	
				perceptions of the personal cost (e.g., anxiety) of math in biology	
				courses. Data were analyzed using linear mixed-effect models.	
				Students who were the first generation in their family to attend	
				college reported significantly lower interest and utility value and	
				significantly higher cost than students who were not first generation.	
				Additionally, female students reported significantly lower interest and	
				significantly higher cost than male students. Our results suggest that	
				instructional strategies geared toward increasing interest in, and/or	
				reducing stress related to using math in biology could be beneficial	
				for addressing the needs of diverse learners, particularly first	
				generation students and women.	
1.04					

	Naneh Ankarian	San Diego State	Talking about teaching:	The Research in Undergraduate Mathematics (PLIME) community	
		Linivorsity	Social notworks of	the Research in Ondergraduate Mathematics (ROME) community	
		Methematica		has locused on students understandings of and experiences with	
		ivialmentatics		mathematics. This project sheds light on another part of the higher	
			undergraduate	education system: the social structure within the department	
			mathematics	surrounding undergraduate mathematics instruction. This poster	
				reports on the interactions of members of a single mathematics	
				department, centered on their conversations about undergraduate	
				mathematics instruction. Social network analysis of this groups sheds	
				important light on the informal structure of the department, in that	
				instructors of coordinated courses form a tight subgroup within the	
1.05				department.	
	Jessie Arneson	Washington	Examining the cognitive	Working memory can accommodate few elements simultaneously	Erika Offerdahl. Washington
		State University	load of visual	but experts develop mental schema to link multiple elements	State University
		Biochemistry	representation	together increasing the amount of information processed at once	
		Dioononiony	i oprocontation	logener, increasing the amount of information processed at once.	
				Instructional materials should support schema development without	
				overwheiming working memory. Cognitive theory of multimedia	
				learning suggests including visual representations may increase	
				information uptake while reducing strain on working memory as	
				processing occurs through visual and verbal channels. Conversely,	
				cognitive load theory indicates interpreting the representation	
				involves additional processing that may overload the working	
				memory, leading to decreased task performance.	
				Reported are pilot data collected from two semesters of	
				undergraduate biochemistry, in which students in one semester were	
				provided more practice with visual-based tasks at all Bloom's levels.	
				Students in both semesters scored similarly on lower-order final	
				exam questions, but students receiving more practice with visual	
				representations performed significantly worse on higher-order exam	
				items. Due to a lack of nonvisual higher-order questions in the nilot	
				study we cannot accertain whether decreased performance may be	
				more pronounced when students are assessed with strictly verbal	
				nore pronounced when students are assessed with strictly verbal	
				prompts. Thus, we seek to examine now adding visual	
				representations impacts student performance by implementing	
1.00				isomorphic assessment items, differing in presence or absence of	
1.06				visual representation, in three undergraduate courses.	
	Leslie Atkins Ellic	Boise State		I ne goal underlying the research presented here is to articulate a set	
		University,		or design principles that support transfer. Ultimately, I will argue that	
		Physics		transfer is fostered in classrooms that are intercontextual: where out-	
				of-class contexts (e.g. social, physical, temporal, functional contexts)	
				are invoked by students in scientifically consequential ways as they	
				develop and vet ideas. In this poster, I focus attention on distinctions	
				between classrooms that support intercontextuality and those that	
				don't. In particular, I will argue that intercontextuality in class is	
				supported by disruptions (Ma, 2016) to traditional instructional	
				practices that confer power on students (that is, devolution -	
1.07				Brousseau/Warfield, 2006).	

		Kinsey Bain	Purdue	Blended processing:	How do non-major students understand and use mathematics to	Jon-Marc G. Rodriguez,
			University,	Mathematics in chemical	solve chemical kinetics problems involving integrated rate laws?	Purdue University
			Chemistry	kinetics	Informed by different bodies of DBER literature, this central question	Alena Moon, University of
					motivated this project and guides our work. The theoretical	Michigan
					framework, personal constructs (a blend of personal and social	Marcy H. Towns, Purdue
					constructivism) lays the foundation for this study. Semi-structured	University
					interviews with 36 general chemistry students, 5 upper-level physical	
					chemistry students, and 3 chemical engineering students were	
					conducted using a think-aloud protocol. The use of a Livescribe pen	
					afforded the collection of audio and written data. The audio data were	
					transcribed, and screenshots of students' written data were inserted	
					into the transcripts. To aid analysis, these transcripts were then	
					refashioned into problem-solving maps. Open coding of the problem-	
					solving maps reveals initial themes regarding students'	
					understanding and use of mathematics when solving chemical	
					kinetics problems. Blended processing was used as a	
					methodological framework to guide the coding process. Through this	
					analysis, distinctive types of blended processing have emerged.	
					Other findings are also being explored, such as the relation of	
	1.08				students' problem-solving steps with their blended processing ability.	
ľ		Anna Marie Berg	Portland State	The Multiple	This poster explores the various representations of groups found	Kathleen Melhuish, Texas State
		0	University,	Representations of the	within introductory abstract algebra textbooks. Representations play	Univeristy San Marcos
			Mathematics	Group Concept	an essential role in students understanding of mathematics (Goldin.	Dana Kirin, Portland State
					2002). Textbooks provide one source for analyzing the intended	University
					curriculum and what representations students may have access to	
	1.09				within their introductory course.	
ľ		Kristen Bieda	Michigan State	The ICALC^2 Project:	Undergraduate students with inadequate mathematics preparation	Lynmarie Posey (Michigan
			University,	Integrating Chemistry and	face significant challenges to completing a STEM degree, including	State University)
			Mathematics	Algebra in College	placement into non-credit-bearing remedial (NCBR) algebra courses	5,
				Courses	and insufficient mathematics skills to succeed in gateway science	
					courses such as general chemistry. The ICALC2 project aims to	
					provide integrated support in both an NCBR algebra course and an	
					Introduction to Chemistry course to enhance students' mathematical	
					preparation for STEM coursework. In particular, we designed	
					instructional interventions focused on mathematical topics that	
					typically present barriers to learning chemistry content: (1)	
					proportional reasoning including unit conversions: (2) linear rates of	
					change including understanding that slope is a rate of change that	
					can expressed as a ratio and interpreting the rate of change from a	
					graph: (3) modeling covarying relationships with functions; and (4)	
					translating between multiple representations. We piloted these	
					interventions in an Introduction to Chemistry course (CEM 121) and	
					in an enrichment workshop (MTH 100F) accompanying a NCBR	
					algebra course. Interventions in CEM 121 provided just-in-time	
					instruction in the mathematics required to support chemistry learning	
					while those in the NCBR course used chemistry applications to	
					provide context and relevance for the mathematics topics. Examples	
					of interventions from the two courses and the associated instructional	
	1 10				income will be presented	
	1.1.9					

	Mitchell Bruce	University of Maine	CORE: Using analogical	Prior studies show that many students have difficulty in coordinating	Joseph C. Walter (a) Mitchell R M Bruce (a b) and Alice F
		Chemistry	macroscopic-	lovels. This is problematic in the intro chemistry lab where	Bruce (b)
			submicroscopic	interpretation requires thinking about nonobservable entities like	
			connections	atoms and molecules. Analogical reasoning is considered an	(a) Center for Research in
				essential skill to connect macroscopic and submicroscopic domains	STEM Education (RiSE).
				The CORE laboratory learning cycle (Chemical Observations	University of Maine, Orono, ME
				Representations Experimentation) involves: making chemical	04473. (b) Department of
				observations (phase 1): using analogical reasoning to explore a	Chemistry, University of Maine,
				representation (phase 2); and designing experiments (phase 3). This	Orono, ME 04473
				poster presents preliminary findings from the first year of an NSF-	
				sponsored research study, which is designed to answer: 1) How do	
				students use analogical reasoning in constructing scientific	
				arguments related to chemistry lab work? and 2) How does repeated	
				exposure to CORE experiments influence students' abilities to	
				coordinate ideas across macroscopic, submicroscopic and	
				representational levels? A cohort of 27 undergraduate students in a	
				first semester general chemistry lab course were selected to	
				participate. The study employed 3 surveys to characterize 1) prior	
				experience with inquiry-based labs; 2) operational level of thinking	
				(GALI) and 3) meaningful learning in the laboratory (MMLI). Student	
1 11				pre-lab assignments, lab notebooks, and lab reports are being	
1.11	Kelli Carter	L Iniversity of	Text analysis models for	Examined and preliminary lindings will be described.	Luanna Prevost University of
		South Florida		student understanding, but can be time consuming to grade. We	South Florida
		Biology	of structure and function	used computerized scoring to facilitate the analysis of student writing	South Fiolida
		Diology		We designed 10 written questions using the core principle structure	
				and function and developed scoring models to predict human scoring	
				of the core concept based on text analysis categories. Over 4000	
				written student responses from general physiology and human	
				anatomy and physiology courses were analyzed using text analysis	
				and logistic regression. Models for five questions produced	
				acceptable human-computer agreement (Kappa >0.7). The core	
				concept structure and function is interdisciplinary with roots in	
				biology, chemistry and biochemistry. These models will provide	
				feedback to science instructors on their students' understanding of	
1.12				structure and function.	
	Warren Christens	North Dakota	Student Resource Use in		Brian Farlow, NDSU; Micheal
		State University,	Non-Cartesian		Loverude, Cal St Fullerton;
		Physics	Coordinate Systems		Mariene Vega, Cal St Fullerton
1.13	1		1	To be filled in by Warren Later	

	Renee Cole	University of	Designing for sustained	Systemic and sustained adoption of research-based instructional	Charles Henderson - Western
		lowa, Chemistry	adoption: Shifting from	practices is a goal of those who develop these practices, funding	Michigan University; Jeff Froyd
			Propagation	agencies, and many educators. Scholarly studies and national	Khatri - Western Michigan
			liopagaaon	compelling evidence of efficacy of these instructional practices. We	University; Courtney Stanford -
				have used the research literature to develop a six-item rubric to	Virginia Commonwealth
				predict the likelihood that an education development project will	University; Debra Friedrichsen -
				successfully spread. We applied this rubric to 71 education	MJ Innovations
				development proposals funded by the National Science Foundation	
				In 2009. The rubric predicted that 80% of these would be	
				subset of these projects, via web searches and interviews with the	
				Pls, suggests that the rubric can be used to make reasonably	
				accurate predictions. Two paradigms, dissemination and	
				propagation, characterize patterns within efforts to achieve the	
				desired goal of transforming undergraduate STEM education. Based	
				on our synthesis of the literature, our analysis of successfully	
				ICCL proposals we argue that a primary reason for the lack of	
				adoption is that developers focus their efforts on dissemination	
				(spreading the word) instead of propagation (promoting successful	
				adoption). Analysis indicates that planning for scale and propagation	
				typically occur after the product is developed and often leads to	
1 1 4				failure to propagate. We argue that such planning needs to occur	
1.14	Frank Conic	l Iniversity of	Analysis of Impacts of	Many educators regard educating the upprepared and under	
		Florida,	Senate Bill 1720	prepared students as the most pressing problem in higher education	
		Mathematics		today (Bailey & Cho, 2011). Developmental Education programs	
				have been considered as the panacea to bridge the gap for	
				underprepared students. Calls for changes in the developmental	
				education programs have intensified over the past two decades with	
				costly, and do not necessarily improve students' chances for	
				obtaining a college certificate or degree. (Venezia & Hughes, 2013).	
				One of the outcomes of the mounting opposition to developmental	
				programs in the State of Florida is the passage of Senate Bill 1720	
				(SB 1720) which was signed into law in July 2013.	
				The law mandates Students who graduated from a Florida public	
				high school in 2007 or later will hot be required to take placement	
				developmental courses will be strictly up to the student based on	
				their academic advisor.	
				The chief methodological goal of this study is to measure the impact	
				of SB 1720 on student achievement by examining outcomes of	
				students at a large community college enrolled in a required gateway	
				Inamematics course from 2014-2017. These students exercised their choice to opt in to enroll in recommended developmental courses or	
				lopt out the developmental courses and enrolled in the dateway	
				mathematics course	
1	1	1			

	Joel Corbo	CU Boulder,	Departmental Action	Since 2014, we have facilitated and studied Departmental Action	Daniel Reinholz, San Diego
		Physics	Teams as a Mechanism	Teams (DATs) in several STEM departments at a large research-	State University
			for Promoting	intensive university as part of a change effort to improve	Noah Finkelstein, CU Boulder
			Departmental Change	undergraduate STEM education. A DAT is a departmentally-based	Mary Pilgrim, Colorado State
				team of faculty, students, and staff working together to address a	University
				broad-scale educational issue. Rather than trying to "solve" the	
				problem themselves, the DAT focuses on creating structures to	
				address the issue in a sustained, ongoing fashion and to positively	
				impact department culture. Through this process, DAT participants	
				come to see the value of collective action in trying to make change.	
				DATs are supported by external facilitators who provide DAT	
				participants with expertise in education and institutional change	
				research, logistical support, connections with related work across	
				campus, and a functional process for achieving their goals. Work with	
				several pilot DATs has been successful, and this project is now	
				expanding to run more DATs at two universities, with the goals of (1)	
				institutionalizing the DAT model on these campuses, (2) learning how	
				different departmental and institutional contexts impact the success	
				of DATs, and (3) developing robust measures of departmental culture	
1.16				around education.	
	Leanne Doughty	University of	Understanding Active		Leanne Dougnty (University of
		Colorado	Learning and Learning	There is strong evidence that the implementation of active learning	Colorado Denver), Brian
		Deriver, Physics		methods in undergraduate science courses can lead to increased	Fallow (North Dakota State
			Classrooms	student conceptual understanding and course achievement. There is	Delveta State University)
			Classioonis	also evidence that Learning Assistants, a practice embedded	Dakola State Oniversity),
				resource, can support the use of active learning methods in the large	Colorado Donvor) Hagit
				lecture science classroom. Though researchers have many ideas for	Korpreich Leshem (Elorida
				why active learning helps students learn, achieve, and persist in a	International University) Laird
				logrning contribute the most to these outcomes, or the mechanisme	Kramer (Florida International
				hearing contribute the most to these outcomes, of the mechanisms	I Iniversity) Paul Le (I Iniversity
				Assistant model contributes to student success in these courses. In	of Colorado Denver) Amreen
				Assistant model contributes to student success in these courses. In	Nasim Thompson (University of
				undergraduate science courses as systems and to examine how	Colorado Denver) Mary
				Learning Assistants influence the classroom system, and ultimately	Nyaema (Florida International
				student outcomes. We are observing characterizing and interpreting	University), Robert Talbot
				the activities and interactions occurring in LA supported and non-LA	(University of Colorado Denver)
				supported science courses at three large research universities. This	
				poster explains our conceptualization of the activity system and	
				describes our efforts to characterize the components and the	
				interactions between components of that system, with a particular	
1.17				focus on active learning tasks and LA-student interactions.	

	Jason Dowd	Duke University,	Identifying empirically-	We have investigated how students' motivation, self-efficacy in	Robert J. Thompson, Jr., Duke
		Physics	derived "learning	science and writing, and epistemic beliefs about the nature of	University; Julie Reynolds,
			dispositions" relevant to	scientific knowledge mediate and moderate the scientific reasoning	Duke University
			student learning and	and writing skills that students exhibit in writing an undergraduate	
			writing	thesis. Synthesizing data that have been collected across multiple	
				STEM departments and institutions over several years, we share	
				findings regarding (1) the relationships among these dimensions, (2)	
				changes to those relationships throughout one semester of a writing-	
				intensive capstone thesis course, and (3) relationships between such	
				characteristics and other learning outcomes. Specifically, we carry	
				out cluster analyses to identify multiple "learning dispositions" that	
				characterize student engagement and scientific identity development.	
				Collectively, this work speaks to both cross-discipline and discipline-	
				specific aspects of engagement in the authentic practice of writing in	
				STEM Writing is a high-impact practice associated with improved	
				learning in STEM disciplines. Previous work indicates that scaffolding	
				the writing process in a thesis-writing course can be an effective	
				strategy for promoting learning, but the underlying processes are not	
				well-understood. We endeavor to better understand these processes	
				I litimately we intend for this work to motivate institution- and	
1 18				department-specific changes	
1.10	Mary Emenike	Rutaers	Introductory chemistry	While Putgers has enjoyed isolated success with course	Suzanne Brahmia, Misha
		I Iniversity	and physics: investigating	transformation in a variety of STEM disciplines, most of the courses	Eaerovitch Charles Ruggieri
		Chemistry	cognitive and affective	taken by introductory engineering students remained largely passive	r derovitori, ondres r dggieri
			domains	in structure and traditional in content. Programmatic changes were	
			domanio	introduced in the calculus based physics course for engineers over	
				the past four years, while the general chemistry course for engineers	
				remained relatively unchanged over this time period. The least	
				offective traditional structures were replaced with research validated	
				linetructional practices: specifically invention tasks and collaborative	
				Instructional practices, specifically, invention-tasks and collaborative	
				mini Jaha, The institutionalized Learning Assistant (LA) Program	
				Inini-labs. The institutionalized Learning Assistant (LA) Program	
				effect some supplemental study groups in general shemistry. Many of	
				the students in this 4 year study goups in general chemistry, wany of	
				In the students in this 4-year study co-enforming both chemistry and physical during their first year at Dutgers. The CLASS Drive and ECL	
				instrumente were administered in the physics source, while the	
				Instruments were administered in the physics course, while the	
				CLASS-Onem and COI were administered to students in general	
				chemistry. A series of proportional reasoning items (PRAT) were also	
				auministered to students in both courses. Changes in students	
				times a served the served and affective characteristics (measured three	
				times across the academic year) will be reported and compared	
1.19		1	1	between the chemistry and physics course experiences.	

	Timothy French	DePaul	Teaching Scientific	Scientific knowledge is constructed through the performing of	Sarah Read, DePaul University
		Liniversity	Writing and	experiments, the analyzing and interpreting of data, and the writing of	Caran read, Der dar Oniversity
		Chemistry	Communication: A Cross	coherent scientific arguments. Therefore, teaching students to be	
		Chernistry	Disciplinary Course	professional scientists requires teaching them to be professional	
			Collaboration	professional scientists requires teaching them to be professional	
			Collaboration	writers within their discipline. We have created a new course for	
				the Department of Chemistry and the Department of Writing	
				The Department of Chemistry and the Department of Whiting,	
				Rheionic, and Discourse at DePaul University. By leveraging our	
				respective strengths and areas of expense, we allord students the	
				opportunity to rigorously improve their written and oral	
				communication skills within scientific contexts. The philosophy and	
				structure of this course will be discussed as will a proposed follow-up	
1.00				assessment study looking at the impact this innovative course	
1.20	O a du O a tha	North Dolota	For a sector in the sector of	structure has on student learning.	Mile Krainvelais, North Delaste
	Cody Gette	North Dakota	Examining the role of	Many students fail to arrive at a correct solution to a given problem	Mila Kryjevskala; North Dakota
		State University,		even though they possess the required knowledge and skills to do	State University
		Physics	reasoning	so. We aim to identify cognitive mechanisms that may account for the	
				observed reasoning patterns. In some cases, an unproductive	
				heuristic representation of a problem may lead to a mental impasse.	
				To break the impasse, the problem representation may need to be	
				changed. This mental change to a more productive representation is	
				known as "insight". This switch often results in a fast, immediate	
				solution (an "Aha!" moment). It does not stem from gaining additional	
				knowledge and is rather due to a change in the reasoner's initial	
				heuristic model. The relevance of insight to physics learning will be	
				illustrated in multiple contexts. Instructional implications will be	
				discussed.	
				*This material is based upon work supported by the National Science	
				Foundation under Grant Nos. DUE-1431857, 1431541, 1431940,	
1.21				1432052, 1432765.	
	Dan Grunspan	Arizona State	Study partnerships: How	Learning in college classrooms is a highly social process with	Benjamin Wiggins, University
		University,	they form, dissolve, and	potentially impactful relationships forming between students. This is	of Washington
		Biology	impact learning	especially true in active learning courses, where peer interactions	
				play a critical role in the learning process. The details of these social	
				dynamics often remain hidden from instructors. Thus, we know little	
				about how many peers students study with, how those peers are	
				similar, and whether these peers effect student learning. A more	
				nuanced understanding of these relationship dynamics may be useful	
				for classroom design.	
				Longitudinal analyses of who students study with for each exam	
				throughout three large active learning introductory biology	
				classrooms were performed to explore 1) what makes study	
				partnerships more likely to form, 2) what makes study partnerships	
				more likely to persist, and 3) the impact study group composition has	
				on exam performance. We find that ethnic homophily is a strong	
				predictor of study partnership between students and some evidence	
				of assortment by performance in the class. Lastly, we find a positive	
				within-student association between the number of study partners and	
				exam scores.	
1.22					

	brant hinrichs	drury university, Physics	Helping Students Make Sense of non-Cartesian Unit Vectors in Upper Level E&M	An upper level E&M course (i.e. based on Griffiths) involves the extensive integration of vector calculus concepts and notation with abstract physics concepts like field and potential. We hope that students take what they have learned in their math classes and apply it to help represent and make sense of the physics. In 2010 we showed that students at different levels (pre-E&M course, post-E&M course, 1st year graduate students) and in different disciplines (physics, electrical engineering) had great difficulty using non-Cartesian unit vectors appropriately in a particular context. Since then we have developed a set of four linked problems that students	
				work on in groups and discuss as a class, to help them confront and resolve some of their difficulties. This poster presents those problems, typical student responses, and three years of post-tests	
1.23				(given on quizzes or exams) that were used to assess their effectiveness.	
1.24	Steven Jones	Brigham Young University, Mathematics	STEM connections: Examples of conceptual blending between biology and mathematics	STEM integration is an important area of work for mathematics, science, and engineering education researchers. While much work has described connections between physics and mathematics, or engineering and mathematics, there is less work that has examined connections between biology and mathematics. This poster provides examples of connections between (a) the Hardy-Weinberg equations and Punnett squares from biology and (b) two quite distinct mathematical topics: polynomial multiplication and probabilities involving independent events. Through the lens of "conceptual blending," I briefly relate some examples of students creating blended spaces between the biology input spaces and the mathematics concepts. For instance, considering polynomial multiplication and Hardy-Weinberg equations together helped some students make connections that strengthened their understanding of both. Similarly, seeing probabilities involving independent events and Punnett squares together helped support students' understanding of each. These results suggest possible examples where STEM integration could incorporate concepts from biology and mathematics	Liz Bailey, Brigham Young University - Hawaii
	Alexis Knaub	Western	Iowa State Calculus	Department of Mathematics at Iowa State has recently implemented	Travis Peters (Iowa State),
1.25		Michigan University, Physics	Team-based Learning Course Transformation	a team-based learning (TBL) approach to some of their Calculus 1 courses. We report on results from the Calculus Concept Inventory and other assessments that have suggested that the TBL has been more effective than traditional pedagogy. These data have guided the next steps for TBL at Iowa State. Next steps include spread to other sections and other pedagogical innovations to further enhance student learning.	Heather Bolles (Iowa State), Elgin Johnston (Iowa State), Craig Ogilvie (Iowa State)

	Regis Komperda	Portland State	Influence of wording on	High quality instruments are necessary to support recorreb	Kathryn R Hoshein Portland
		I Iniversity	motivation instrument	investigating classroom environments, the effects of different	State University
		Chemistry	functioning: A quantitative	Investigating classicities and other discipling based educational	Jack Barbera, Portland State
		Chemisuy	investigation		Liniversity
			Investigation	research. Assessing instrument quality requires examination of	Oniversity
				is which the issterment is used. This research describes the	
				In which the instrument is used. This research describes the	
				evaluation of data obtained from administration of an existing student	
				motivation instrument in lower-division undergraduate biology,	
				chemistry, and physics courses.	
				Nearly 2000 responses were collected online from the randomized	
				administration of multiple versions of the instrument in which either	
				the 'science' or the discipline-specific wording, such as 'chemistry',	
				was used. Evidence for the generalizability of student responses	
				across variations in item wording as well as course type is being	
				examined using factor analytic methods. Demonstrating the	
				generalizability of the instrument will facilitate cross-disciplinary	
				research by providing a meaningful measure with which to compare	
1.26				student motivation in different undergraduate science courses.	
	Mila Kryjevskaia	North Dakota	Probing the relationship	As part of a multi-year, multi-institutional effort, we have been	Nathaniel Grosz, Cody Gette,
		State University,	between cognitive	investigating the development of student reasoning skills in physics	MacKenzie R. Stetzer, Andrew
		Physics	reflection and student	courses. In particular, we have been focusing on the identification of	Boudreaux
			reasoning*	factors and instructional circumstances that appear to enhance or	
			_	suppress the application of correct reasoning approaches.	
				Previously, we employed the Cognitive Reflection Test (CRT) to	
				measure students' abilities to engage analytical thinking to evaluate	
				(and possibly override) initial intuitive ideas. We have identified a	
				strong correlation between CRT scores and learning gains, as	
				measured by the FMCE. In this presentation, further evidence for the	
				impact of cognitive reflection skills on students' learning will be	
				discussed. A correlation between CRT scores and student	
				performance in the specific context of frictional forces will be	
				examined. Implications for instruction will be discussed.	
				Abstract Footnotes: *This material is based upon work supported by	
				the National Science Foundation under Grant Nos. 1431857,	
1.27				1431541, 1431940, 1432052, 1432765.	

	Sandra Laursen	University of	When is seeing		Tim Archie, U. Colorado
		Colorado	believing? Challenges in	For many studies of classroom practices and outcomes in higher	Boulder
		Boulder.	characterizing STEM	education, it is important to characterize teaching. Researchers may	Charles N. Havward, U.
		Chemistry	teaching	wish to describe teaching practice across an institution or a	Colorado Boulder
			g	discipline relate student outcomes to teaching practices or measure	Brian Katz Augustana College
				change in teaching practice over time. Thus we must understand	Timothy J Weston U
				what can be learned from different approaches to characterizing	Colorado Boulder
				teaching, and what are the strengths and limitations of each of these	
				methode	
				Metivated by a pood for good mothods to moscure change in	
				togehing after prefersional development, we have recently conducted	
				two studies of measuring teaching practice in college methometics	
				In one study we compare classroom observations of instructors to	
				an one study, we compare classicity togething before and offer	
				survey items used to characterize teaching before and alter	
				professional development workshops. In a second study, we closely	
				insights asing from student and instructor surveys, chapterions	
				insights gamed from student and instructor surveys, observations,	
				bightights of findings from those studies that suggest how and when	
				inginights of infulings from these studies that suggest now and when	
				each measurement method can be useful. While observation is often	
				considered the most valid approach for characterizing teaching, we	
				challenge common practices around time-based sampling of class	
1.00				observations to characterize STEW instruction at the course level.	
1.20	Katharina Lazan	L Inivorsity of	Conoral chomistry	Indevotending the potyme and purpose of models including	Dr. Nicolo Bookor
		lowe Chemietry	General Chemistry	Understanding the nature and purpose of models, including	DI. NICOLE BECKEL
		lowa, Chemistry	of the neture and	mathematical models, is childral to enabling undergraduate chemistry	
				students to use models to predict and explain phenomena. To gain a	
				sense of now students understand different models in the general	
			chemistry contexts	chemistry curricula, we developed a survey to examine general	
				chemistry students reasoning about specific mathematical models in	
				the general chemistry curriculum. Here, we will discuss emerging	
				inemes pertaining to now students think about the nature and	
				purpose or models including the ideal gas law and rate laws.	
				Preliminary findings highlight that even after a year of chemistry	
				coursework, many students noid naive and inconsistent conceptions	
1 4 6 6				of the nature and purpose of mathematical models and their use in	
1.29	1			science.	

	Dennis Lee	Clemson	Students' Scientific Ways	Science educators design instructional strategies to help students	Dylan Dittrich Reed, Clemson
		University	of Knowing in an	agin knowledge, but the optology of how students approach	University: Lisa Benson
		Biology	Introductory Biology	knowledge acquisition typically remains unclear. We conducted a	Clemson University
			Course	nilot study in a project-based introductory biology class to explore	
				students' ways of knowing while constructing a scientific argument	
				Student interviews and artifacts (reflections and project reports) were	
				analyzed through the lens of epistemic beliefs. Initial analysis of the	
				data revealed that some students believe knowledge comes from	
				authority, a way of knowing that requires no justification or	
				construction of knowledge. Other students presented the argument	
				from an ethical way of knowing, using moral principles to justify their	
				argument, or from a medical way of knowing, using patient well-being	
				to justify their stance. Still other students used core concepts in	
				biology such as evolution or structure and function – a biology way of	
				knowing – to support the reasonableness of their claims. This	
				suggests that while some students are capable of understanding and	
				using a scientific way of knowing, they may not adopt this way of	
				knowing when appropriate. Exploring student ways of knowing will below in building educational strategies that encourage students to	
				use scientific ways of knowing to foster a deeper understanding of	
				science	
1.30					
	Elise Lockwood	Oregon State	Computational Thinking		
		University,	and Activity in	Computational activity is becoming increasingly relevant in our	
		Mathematics	Mathematics: An Initial	society, and computing is an important mathematical disciplinary	
			Discussion	practice among mathematicians and mathematics students.	
				Computational thinking (Wing, 2006; 2008) is a construct from	
				computer science, which, while difficult to define, may be a type of	
				thinking we want to foster among students. In this preliminary work, I	
				discuss two projects in which I seek to better understand	
				computational timking and activity in mathematics. First, I present	
				computational thinking and activity in their own work (in particular I	
				discuss a term called algorithmic thinking). Second I describe a new	
				project investigates how computational activity can help develop and	
				improve students' combinatorial thinking. I share preliminary results	
1.31				and facilitate a theoretical discussion about both studies.	
	Brandon Lunk	Texas State	Attitudes of Life Science	Biological and health care majors comprise one of the largest	Anna Lewis, Elon University;
		University,	Majors Towards	populations of students enrolled in physics courses each year.	Robert Beichner, North
		Physics		Because of this, there is a growing interest within the physics and	Carolina State University
			In Introductory Physics	biology communities to restructure the introductory physics courses	
				In this context, computational modeling could prove to be an	
				accessible and competitional modeling could prove to be all	
				medically relevant phenomena within in the physics course. As a first	
				step leading to implementation, we conducted an exploratory study to	
				help us learn about life-science majors' attitudes towards	
				programming. Our observations suggest that these students had an	
				apprehension towards programming but at the same time held a	
				positive attitude towards data tables, which can be used to scaffold	
1.32				more rigorous programming in the classroom.	

1.33	Louise Lynch	University of Nebraska- Lincoln, Biology	Situating Biology Faculty Technology Perceptions in TPACK	Technological pedagogical content knowledge, referred to as TPACK (Mishra & Koehler, 2006), is the leading conceptual framework for explaining and improving teacher knowledge needed to successfully integrate technology in K-12 education. Instructional technologies are just as pervasive in higher education, where instructor knowledge bases and instructional landscapes likely differ. A multiple case study was carried out to better characterize biology instructor's technology uses in undergraduate biology classes, and explore how faculty's teaching perceptions explain their technology integration. The findings will connect faculty perceptions to TPACK and influence efforts to measure and improve successful technology integration in higher education settings.	Marilyne Stains, UNL; Doug Golick, UNL; Trisha Vickrey, UNL
2.01	Vinayak Mathur	Georgetown University, Biology	Faculty Training and Student Performance Gains in Bioinformatics	Bioinformatics is an interdisciplinary field that brings together mathematics, statistics, and computer science to analyze biological sequence information. Anyone with access to a computer, the internet, and minimal training in this field can contribute to authentic genomics research. Yet many biology faculty may not feel comfortable teaching bioinformatics to their students because they lack training. To overcome this challenge, the Genome Solver project aims to empower undergraduate faculty by offering training and resources for creating hands-on bioinformatics course materials. In this study, we measured student performance using a 20-question multiple choice quiz delivered before and after bioinformatics instruction. Data collected from 641 students at five different schools demonstrated that bioinformatics instruction led to learning gains on a variety of bioinformatics topics. Student performance increased for all five schools suggesting that bioinformatics training workshops are an effective means of encouraging faculty to engage in bioinformatics instruction and positively influence student learning.	Gaurav Arora (Gallaudet University), Mindy McWilliams (Georgetown University), and Anne Rosenwald (Georgetown University)

	Becky Matz	Michigan State	Incorporating the Three		James T. Laverty, Kansas State
		I Iniversity	Dimensions in Gateway	The 2012 NDC report A Fremowerk for K 12 Science Education	Liniversity: Marcos D
		Chemistry	Science Courses	lintraduoad the idea of three dimensional learning as a guide to help	Caballero, Michigan State
		Chernistry		atudente develen e rebust understanding of esionee. Three	University: Justin H Carmel
				students develop a robust understanding of science. Thee-	Michigan State University:
				dimensional learning nelps instructors to define what they want	Diano Ebort May Michigan
				students to learn (core ideas), what they want students to do with	State University Caril, Este
				their knowledge (scientific practices), and now students should	State University, COIL. Fata-
				connect their knowledge across science disciplines (crosscutting	Harliey, Michigan State
				concepts). Multiple projects and activities at our university have	University, Deboran G.
				encouraged faculty to improve gateway courses by incorporating the	Herrington, Grand Valley State
				three dimensions into their assessments and instruction. We	University; Lynmarie A. Posey,
				developed the Three-Dimensional Learning Assessment Protocol (3D	Michigan State University; Jon
				LAP) as a tool for characterizing the potential for assessment tasks	R. Stoltzfus, Michigan State
				to elicit evidence of three-dimensional learning. In coding	University; Ryan Stowe,
				approximately 5,000 exam items from 200 course sections of	Michigan State University;
				introductory biology, chemistry, and physics course exams, we find	Ryan D. Sweeder, Michigan
				evidence that faculty are now incorporating more three-dimensional	State University; Sonia M.
				items into their exams. The development of a corollary protocol for	Underwood, Florida
				for characterizing the three dimensions in teaching is underway.	International University;
				Student grades, drop-fail-withdraw rates, and persistence in STEM	Melanie M. Cooper, Michigan
				degree programs will be compared across course sections based on	State University
2.02				the extent to which they reflect the three dimensions in assessments.	
	Melody McConne	North Dakota	The Effect of	In the interest of improving undergraduate science education, we are	Lisa Montplaisir, North Dakota
		State University,	Departmental Social	investigating how an instructor's social context (measured by	State University; Erika
		Biology	Context on Instructor	informal social interactions of instructors within a department) affects	Offerdahl, Washington State
			Assessment Thinking	his/her attitude toward teaching ideas, potentially mediating the	University
				adoption of evidence-based instructional practices. Within a	
				supportive departmental environment in which many potential	
				barriers to faculty instructional change have been removed, we	
				chose to focus on instructor ideas about assessment, since effective	
				assessment is often indicated as a critical aspect of effective active	
				learning. Using the Faculty Self-Reported Assessment Survey	
				(Hanauer and Bauerle 2015), we surveyed undergraduate biology	
				instructors within a single department at a research university on	
				their assessment knowledge, practices, attitudes, and confidence.	
				We also asked them to indicate the other instructors in the	
				department with whom they interact about teaching, about research,	
				and socially, and which instructors they saw as a resource for	
				teaching ideas within the department. The survey was repeated once	
				per semester over a period of two years. Results will be presented	
				showing the relationship between instructor assessment thinking and	
				node-level network attributes over time, and the structure of the	
				network produced by instructor-reported teaching related interactions	
2 03				will be described.	

	Chris Minter	Michigan State	Characterizing Student	The goal of this study was to characterize general chemistry	Melanie Cooper (Michigan
		University,	Explanations of Atomic	students' explanations of atomic emission spectra to gain insight into	State University)
		Chemistry	Emission Spectra	how students understand the mechanistic process for how atomic	Justin Carmel (Michigan State
				spectra are created. We analyzed student explanations of atomic	University)
				spectra using a modified Knowledge Integration Framework that was	
				used to characterize the extent to which students connect together	
				relevant concents within their responses. We present our approach	
				used to analyze student explanations of phenomena and discuss	
				how it can be used to gain insight into how students understand the	
2.04				now it can be used to gain insight into now students understand the	
2.04	Deher Medir	Kanaga Chata	I'l ealing chead" as an	relationship between concepts.	Flagner C. Course, Kanaga
	Banar Modir	Kansas State	Looking anead as an	As part of a larger project to investigate now upper-division students	Eleanor C Sayre - Kansas
		University,	extended readout	solve mathematically-intense problems, we use coordination class	State University
		Physics	strategy in EM	theory to describe how students connect physical scenarios with	
				mathematical insight. Within coordination class theory, students read	
				information out of problem statements, connecting the specifics of	
				the problem with generalized conceptual schemata (the "coordination	
				class") in a causal net. While previous research using coordination	
				classes has focused on identifying particular coordination classes or	
				details of the causal net, our research focuses on an extended	
				readout strategy, which we call "looking ahead". To characterize the	
				mechanism of looking ahead, we study students' problem solving	
				with senaration of variables and Taylor series expansions. When	
				students look ahead in a problem, their mathematical and physical	
				insight can beln them avoid time consuming calculations. We will	
				illustrate the structure of locking sheed with video based elegaroom	
2.05				linustrate the structure of looking aneau with video-based classioonin	
2.05	Jonni Momeon	North Dakata	Lippocking how and why	Judia.	Tammy Long Michigan State
		State University		Scientists routinely use models to represent and evaluate	Linivorsity
		Biology		knowledge, foster collaboration and communication, and test	Elena Bray Spoth St Louis
		Бююду		nypotneses about system properties. Although models and modeling	Liena bray Spein, Si Louis
			biology	are common in science practice, college STEM learners, particularly	
				in introductory courses, rarely engage in modeling activities beyond	Caleb Trujillo, Michigan State
				interpretation of provided models in textbooks. In biology, creating	University
				and interpreting models of all types is increasingly emphasized as a	Sara Wyse, Bethel University
				core competency. At the undergraduate level, little research has	
				investigated how the practices of creating and interpreting models	
				impact student learning of biology or support the development of	
				discipline competency. As part of a multi-institutional collaboration.	
				we are investigating the role of conceptual modeling in promoting	
				learning about biological systems in undergraduate biology	
				Specifically we are working to (1) develop a systems thinking	
				framework for introductory biology (2) characterize the skills and	
1				knowledge elicited during modeling activities (3) compare knowledge	
1				and reasoning elicited on models versus other concentual	
				and reasoning enclied on models versus other conceptual	
				assessments, and (4) identity instructional interventions that promote	
				Improvement in students modeling and systems thinking skills.	
				i nrough this research, we will better understand now and in what	
				contexts modeling serves to promote student learning about	
	1	1	1	Ibiological evotome	1

	Alena Moon	University of	Faculty conceptions of	Writing is widely recognized as fundamental to the construction and	Anne Gere, University of
		Michigan,	writing and its role in the	communication of scientific knowledge. Building on this relationship	Michigan
		Chemistry	classroom	between writing and knowledge construction, writing-to-learn (WTL)	Ginger Shultz, University of
				activities have shown to be effective in many STEM classrooms.	Michigan
				Science education studies have elicited scientists' conceptions of	
				their own writing practices, while writing studies have explored	
				instructor conceptions of writing instruction. This study bridges those	
				two lines of inquiry by exploring how research-intensive STEM	
				faculty conceive of writing and its role in the STEM classroom. To this	
				end, 33 STEM faculty across multiple disciplines and positions were	
				interviewed about writing and their ideas about its role in their	
				classes. A phenomenographic analysis resulted in four faculty "types"	
				consisting of unique combinations of concept and practice, organized	
				according to compatibility with WTL. Profiles were built that describe	
				unique conceptions, desired outcomes, and challenges for each	
				type. These profiles, along with a discussion of disciplinary	
2.07				differences, will be presented.	
	Kevin Moore	University of	Broadening students'	Students' representational activities are key to their success in STEM	
		Georgia,	representational	fields. Specifically, students' representational activities must be	
		Mathematics	experiences	sophisticated enough to support their constructing productive	
				meanings for STEM ideas and concepts. In this poster, I draw on	
				Piagetian ideas and educational research to frame the sophistication	
				of students' ways of thinking for graphing. Namely, I illustrate	
				distinctions between those ways of thinking dominated by	
				sensorimotor experience and those ways of thinking dominated by	
				the coordination of mental actions. Against the backdrop of these	
				distinctions, I argue that we, as educators and researchers, need to	
				broaden students' representational experiences. Instructionally, doing	
				so can afford students increased opportunities to construct	
				productive and generative meanings for ideas and concepts that	
				connect STEM fields. In terms of research, broadening students'	
				representational experiences enables researchers to form more	
				viable and detailed working hypotheses of students' ways of thinking	
2.08				for graphing and related topics.	

	Megan Nagel	Penn State	Student comparisons	Potential energy is a conceptually rich topic that is relevant for	Beth Lindsey, Penn State
		Greater	between ion interactions	providing the explanatory power for numerous energy changes in	Greater Allegheny
		Allegheny,	and macroscopic	chemical contexts. Energy changes related to phase changes.	
		Chemistry	examples from physics	bonding, and solution formation are all related to changes in a	
				system's potential energy. Yet, potential energy presents many	
				documented difficulties for students. We have been examining the	
				most effective approaches for using students' existing correct ideas	
				about potential energy to help support their understanding in	
				chemical contexts. Our evidence suggests that some common	
				analogies, like magnetic attractions, used for electrostatic	
				interactions are appealing to students, but may ultimately reinforce	
				incorrect ideas regarding potential energy changes of the system.	
				Other potential energy examples, like those involving gravitation may	
				avoid reinforcing student misconceptions, but suffer because the	
				connection to electrostatics is not as obvious to students. We hope	
				that by better understanding how students make interdisciplinary	
				connections regarding potential energy, materials can be designed to	
				support a robust and functional understanding of this important topic	
2.09				throughout the chemistry curriculum.	
	Abhilash Nair	Michigan State	Exploring life-science	I present in-progress work of investigating student conceptions of	Paul Irving (Michigan State
		University,	students' conceptions of	relevance in the introductory physics classroom. This work is situated	University), Vashti Sawtelle
		Physics	the relevance of physics	in the first semester of a studio physics for the life-sciences course	(Michigan State University)
				aimed at leveraging students' disciplinary expertise in biology and	
				chemistry as they learn physics. Physics is often communicated via	
				policy recommendations and program requirements as being	
				relevant and important for the future of life-science students, but	
				otten these students disagree. In trying to address this disconnect, I	
				share analysis of interviews with students in the early weeks of the	
				course to demonstrate that our current understanding of relevance in	
2.10				physics needs to be expanded.	

	Erika Offerdahl	Washington State University, Biochemistry	Measuring instructor- generated feedback as a critical component of evidence-based instructional practices	Significant learning gains have been associated with evidence-based instructional practices (EBIPs), yet there is notable variability in the magnitude of these outcomes. A common hallmark of EBIPs is the emphasis on student engagement, construction of knowledge, and frequent feedback on in-progress learning. We hypothesize that diversity in instructors' formative assessment (FA) and feedback practices contributes to differences in the learning outcomes of EBIPs. To test this hypothesis, we adopt a fidelity of implementation (FOI) framework to (a) describe FA and feedback during evidence-based instruction and (2) characterize the relationship between variations in FA and student learning.	Melody McConnell, Jeff Boyer, Jennifer Momsen, Rachel Salter, Kurt Williams, Lisa Wiltbank.
2.11				We video-recorded teaching episodes with similarly student-centered COPUS profiles and documented variations in what instructors do after initiating a FA cycle using a refined FA observation protocol (k = 0.82). We noted the (a) format, Bloom's level (k = 0.85) and Socratic nature of all FA prompts, as well as (b) frequency and types of instructor-generated feedback and associated student responses. Our data reveal marked differences in the FOI of FA between instructors with similar pedagogical training, and in patterns of student responses. We discuss implications for faculty pedagogical training and research on EBIPs efficacy.	
2.12	Sam Pazicni	University of New Hampshire, Chemistry	Expertise reversal when using texts in general chemistry	Textbooks are commonly used as reference materials in general chemistry classroom settings, and students are expected to "read the text" if they need to review topics. Past studies have shown that students enter college with a range of reading comprehension abilities and background knowledge in chemistry, and that textbooks vary greatly in readability measures. This study investigated how student characteristics of prior knowledge and reading ability affect their understanding of material presented in text format. Four different student populations were studied, and the chemistry topics tested were bonding representations and redox chemistry. The results suggest there is an expertise reversal effect where students with higher prior knowledge are adversely affected when they read a text passage about a chemistry topic.	René Buell, University of New Hampshire

	Michelle Plavnik	Georgia State	Modeling Perception and	Students, educators, and universities benefit from the increased	
		University,	Experience of Pleasure,	awareness attained through this research. Students make larger	
		Chemistry	Engagement and	strides towards their academic goals, educators improve course	
			Meaning; Success	designs, and universities create targeted interventions to promote	
				desired outcomes. The aims of the study are to capture the	
				perceptions and experiences of undergraduate students in the	
				chemistry classroom. Guiding research questions probe the	
				relationships among variables including flow, purpose, ambition, and	
				brightness. Follow up research questions probe the implications for	
				student success in chemistry. Pre and post semi-structured in person	
				interviews are conducted. An online questionnaire is also distributed	
				during class several times throughout the semester. The interviews	
				are evaluated with the aid of Nvivo software, and the questionnaires	
				are evaluated with the aid of Excel and R software. Both sets of data	
				are used to discover statistical relationships among variables and	
				student success. Future directions include exploration of attrition	
				rates in undergraduate chemistry courses, perceptions and	
				experiences of graduate students, and comparisons between lab,	
				lecture, and mixed teaching methods. Preliminary results of the pilot	
2.13				study will be presented.	
	Maia Popova	Miami University,	Organic chemistry	No previous research has explored students' thinking when making	Stacey Lowery Bretz, Miami
		Chemistry	students' understandings	connections between organic chemistry reactions and reaction	University
			of connections between	coordinate diagrams. Our research has investigated students' ability	
			reactions and reaction	to choose reaction coordinate diagrams that correspond to specific	
			coordinate diagrams	substitution and elimination reactions. An analysis was conducted of	
				students' understandings of the kinetic and thermodynamic factors	
				that correspond to these reactions and how students related these	
				ideas when describing reactions with reaction coordinate diagrams.	
				Ausubel's theory of meaningful learning was chosen as the	
				theoretical framework for the study to explore the differences	
				between meaningful learning of the concepts and rote memorization	
				of dogmatic facts and rules. Thirty six students enrolled in organic	
				chemistry II were interviewed in a qualitative study using semi-	
2.14				structured interviews. The preliminary findings will be presented.	

	Lynmarie Posey	Michigan State	Graphing as a Tool to	Proportional reasoning, particularly in the forms of understanding	Kristen Bieda, Department of
		University,	Build Mathematical	ratios and relationships between covarying quantities, is critical to	Teacher Education, Michigan
		Chemistry	Understanding in	student success in general chemistry. Students use this reasoning	State University
			Chemistry	when doing unit conversions, performing stoichiometry calculations.	Pamela Mosley, Department of
				and thinking about phenomena such as electrostatic forces or the	Chemistry, Michigan State
				relationship between temperature and average kinetic energy. At the	University
				same time, this is an area where students enrolled in non-credit-	Jennifer Nimtz, Program in
				bearing-remedial (NCBR) algebra courses often struggle. As part of a	Mathematics Education
				chemistry bridge course developed for Michigan State's Dow STEM	Michigan State University
				Scholars Program, which targets students interested in STEM	William Humes Program in
				degree programs who place into NCBR algebra, we have developed	Mathematics Education
				and piloted mathematics interventions supported by the mathematics	Michigan State University
				education literature through a collaboration between chemists and	inionigan etate envelory
				mathematics educators. Our just-in-time mathematics instruction	
				contextualized in chemistry uses multiple representations (symbolic	
				tables of numerical values, and graphs) to support students in	
				building mathematical understanding. Examples of using	
				construction and interpretation of graphs to support mathematical	
				construction and interpretation of graphs to support mathematical	
2.15				relationships between enventing quantities will be presented	
2.15	Edward Rodich	L Iniversity of	Interdisciplinary Teaching	Auch a signification of the second se	Chandra Turnon
		Manuland	Interdisciplinary reaching	Much scientific instruction occurs across disciplinary boundaries.	Chandra Turpen
		Dhycioc	Bosoareb	Physicists teach engineers, chemists teach biologists, and	
		FILIYSICS	Research	mathematicians teach everybody. But disciplines create their own	
				distinct cultures: conventions, goals, expectations, and	
				epistemologies. If we treat disciplines as different cultures, cross	
				disciplinary instruction looks different. When exploring another	
				culture, we bring a powerful measuring instrument – our personal	
				intuitions and culture – that may distort or misinterpret what we see.	
				We have to not only try to understand our subjects' perceptions, but	
				to be aware of the inevitably biased interpretive tools we bring to our	
				analysis.[1] This approach leads to deeper insights, both into the	
				culture we observe and into our own. For seven years we have been	
				exploring the culture of biology while developing an introductory	
				physics course for biologists.[2] What we have learned encourages	
				us to make significant changes in how we think about and present	
				physics for life science students.	
				[1] Michael Agar, Language Shock (1994, Harper Collins), ISBN:0-	
				688-14949-9	
				[2] E. F. Redish et al., NEXUS/Physics: An interdisciplinary	
				repurposing of physics for biologists Am. J. Phys. 82:5 (2014) 368-	
2.16				377. doi: 10.1119/1.4870386	

	Gilbert Revoders	I Iniversity of	Developing Materials to	Skills such as critical thinking information processing and	Renee S. Cole, University of
	Chbert Reynders	Iowa Chemistry	Provide Formative	communication are frequently cited as key outcomes for STEM	Iowa: Juliette Lantz Drew
		lowa, onemiou y	Feedback on Students'	degree programs. My work focuses on the development of resources	University: Suzanne M. Buder
			Process Skills	for instructors that provide feedback to students and that inform the	Virginia Commonwealth
				instructor as to the effectiveness of their instructional strategies in	University: Courtney I
				aupporting skill development. To date, resources include rubrics to	Stanford Virginia
				supporting skill development. To date, resources include rubics to	Commonwealth University
				evaluate students written work and a workshop to train instructors in	Commonwealth Oniversity
				assessing process skills in the classroom. These resources have	
				to ansure velicity reliability and utility in multiple STEM disciplines	
0.47				to ensure valuaty, reliability, and utility in multiple STEW disciplines	
2.17	Down Dickov	National Salance	National Science	and course levels.	
	Dawn Rickey			Several programs within and across the National Science	
		Foundation,	Houndation Programs	Foundation's Directorate for Education and Human Resources (ERR)	
		Chemistry	Inat Support Discipline-	support projects focused on discipline-based education research.	
			Based Education	I his poster will describe key programs and provide advice regarding	
2.18			Research	how to design projects and develop proposals.	
	Kimberly Rogers	Bowling Green	Synergizing Experienced		
		State University,	and Novice Graduate	We developed and implemented a peer-mentoring program at two	
		Mathematics	Student Instruction via	US universities whereby nine experienced GSIs each mentored three	
			Peer-mentorship	or four first- and second-year GSIs (novices). Mentors facilitated bi-	
				weekly small group meetings (as part of this NSF-funded peer-	
				mentoring program, IUSE 1544342 & 1554346) whereby mentors	
				provided context-specific support to help novices use active-learning	
				techniques. Meeting discussion topics were informed by novices'	
				interests, mentors and novices concerns, and ideas other small	
				groups discussed. To inform collegiate mathematics teacher	
				education we asked: What topics from small-group peer-mentoring	
				meetings did novices value? Applying a social constructivist lens, we	
				identified how the small group topics were valued. We qualitatively	
				coded data as either within a group or from other groups and	
				analyzed each of the 30 novice's ratings of topics discussed. Results	
				indicate topics novices value and topics peer-mentors may struggle	
				to facilitate well informing future professional development. These	
				results offer insight and synergy between educating GSIs and	
2 19				improving undergraduate mathematics teacher pedagogy	
2.10	Frin Ronavne So	UMD Physics	Adapting Canonical	Canonical representations in quantum mechanics represent tov	Avush Gupta
			Representations in	models from which physicists build more complex systems	
			Quantum Mechanics	Previous research has focused on concentual and mathematical	
				difficulties students have when reasoning about	
				those toy models. What is underevisional is how students adopt	
				these toy models and representations when food with	
				nese toy models and representations when laced with	
				interviewe with three electrical anginaering majore	
				interviews with three electrical engineering majors,	
				showing some of the ways students adapt and transfer these	
				canonical representations and associated toy models.	
				we argue that students are capable of adapting these toy models,	
				even while in the process of understanding the toy	
				models themselves and that the process of adaptation can contribute	
				towards deeper understanding of the toy models and	
2.20				associated canonical representations themselves.	

	-				
	ICharles Ruggieri	Rutgers, The State University of New Jersey, Physics	Catalyzing Sustained Transformations in a Large Enrollment Introductory Electromagnetism Course	Large enrollment physics courses for engineers at Rutgers include many components, with a team of faculty responsible for content. In addition, course administrators change every few years and often modify materials based on their own experiences, degrading improvements from a given year after a few iterations[1]. To address these issues, we initiated the Measurable Learning Objectives Project, which has helped inform the transformation of a large enrollment calculus-based electricity and magnetism course. Faculty and PER researchers collaborated to construct measurable objectives based on published goals from several sources[2-4] and coupled objectives to a form of assessment. We categorized topics from the prior year's course materials and extracted weekly learning objectives, used existing assessments to evaluate if the component satisfies the objectives, and used the results to influence modifications of content emphasis and method. In this poster, we address the learning objective development process and the collaborative effort to improve course materials. [1] Henderson (2007) [2] Pollock (2009)	Suzanne White Brahmia, Department of Physics, University of Washington
2.21				[3] Desiauriers (2009) [4] Beichner (2016)	
2.22	Elizabeth Sandq	lowa State University, Biology	Impact of introductory course-based research on gains in self-efficacy, science identity, and sense of community leading to persistence in STEM.	The Freshmen Research Initiative (FRI) is a program at Iowa State University whose strategy is to create course-based undergraduate research experiences for first-year students across STEM disciplines. Currently, the program oversees eleven courses, reaching over 200 students in majors including chemistry, biology and engineering. Analysis of self-reported gains using the Undergraduate Researcher Student Self-Assessment following a single semester of course-based research indicated good to great gains in Thinking and Working Like a Scientist, Personal Gains, and Gains in Skills. Some of the highest reported gains related to student attitude. Most students reported a sense of responsibility toward their projects and the opportunity to think creatively about their projects. Students also reported feeling like scientists, having a chance to participate in real world research. Participation in the FRI also significantly increased students' quantitative reasoning skills as assessed in a modified Test of Scientific Literacy Skills assessment. Pre- and post-tests indicated gains in reading and interpreting graphs, solving problems using quantitative skills, and understanding basic statistics. These are promising results from a single semester of freshmen research, demonstrating that it is possible to provide authentic research experiences and opportunities for independence at the introductory level.	Craig Ogilvie, Iowa State University

	Benjamin Schern	University of	Student determination of	Given the significance of differential area vectors in multivariable	John Thompson
		Maine Physics	differential area elements	coordinate systems to the learning of physics in electricity and	
			in upper-division physics	magnetism (E8M) students in junior level E8M were interviewed	
				about a number of typical ESM problems involving integration over	
				about a number of typical Eavy problems involving integration over	
				field from a long ourrent corruing wire and called to call for the	
				ment from a long current-carrying wire and asked to solve for the	
				magnetic nux through a square loop. A second task asked students	
				to set up an integral to solve for the electric field as a function of	
				distance from a charged circular sheet. During the tasks, students	
				were asked to elaborate on their choices of differential area vectors.	
				Several responses were common across interviews, as were a	
				number of general difficulties that nampered students choice of	
				differential area. Additionally, students providing correct area	
0.00				differential areas are built from their corresponding lengths	
2.23	lannifan Cabusidt	Liniversity of			Dance C. Cala, University of
	Jennier Schmidt	University of	Assessment of process	Process skills can be applied broadly across STEM courses and	Refield S. Cole - University of
		liowa, chemistry		protessions. To optimize student development of process skills, there	
			responses to open-ended	should be alignment between what instructors value and what they	College, Anne Falke -
			exam questions	assess in the classroom. Alongside traditional learning outcomes, the	worcester State University;
				Analytical Process Oriented Guided Inquiry Learning Project (ANA-	Julielle Laniz - Drew University
				POGIL) project clearly articulated key process skills that that	
				students were encouraged to develop in addition to traditional	
				content knowledge outcomes. The faculty consortium from this	
				project developed open-ended, multiple-part exam questions to be	
				used to assess skills and content developed using the classroom	
				activities. The exam questions were administered across multiple	
				institutions over seven semesters. Qualitative coding was used to	
				analyze student responses in order to characterize the degree to	
				which there was evidence that students had demonstrated their	
				ability to engage in Information Processing, Critical Thinking, and	
				Problem Solving. We report on qualities of question structure and	
				phrasing that were more effective at eliciting specific process skills in	
				the student responses. The results of the poster will also report on	
				how successful the exam questions were at eliciting the faculty	
2.24				identified process skills for each question.	
	Ginger Shultz (S:	University of	Identifying and	Writing-to-Learn is known to support deep conceptual learning and	Anne R. Gere, Solaire
		Michigan,	Addressing Barriers to	yet it is not widely adopted in STEM. This presentation will describe a	Finkenstaedt-Quinn, Alena
		Chemistry	Writing-to-Learn	cross-disciplinary mutlti-institutional writing-to-learn project gram at	Moon (University of Michigan),
				the University of Michigan, Duke University, and University of	Jason Dowd, Robert
				Minnesota. Program goals are to 1) understand the challenges	I hompson, Julie Reynolds
				associated with adoption of Writing-to-learn and 2) to develop	(Duke University), Leslie Schiff,
				practical solutions that enable its broad dissemination. Faculty views	Pamela Flash (University of
				and use of classroom writing were investigated using a survey of	Minnesota)
				SIEM faculty (Ca. 5000) from 71 research institutions nationwide. A	
				subset of these faculty were also interviewed to further elicit their	
				conceptions. Broadly, the study revealed a disparity between how	
				SIEM faculty view the role of writing in their own discipline and how	
				they use writing in the classroom. The study further revealed barriers	
				to faculty use of writing in the classroom and that these barriers are	
				discipline specific. This presentation will also describe how the team	
0.05				is using these findings to work with faculty partners to implement	
2.25		1	1	whung in their classroom.	

ate University), John North Dakota State , and Jennifer North Dakota State
peirs and William N. [,] ersity of Maine; Bett , Penn State Greater
peiı /ers

	Joanne Stewart	Hope College, Chemistry	There is no single course in inorganic chemistry	The subdiscipline of inorganic chemistry includes the chemistry of the entire periodic table. At many institutions, this chemistry is supposed to be taught in one semester. This breadth poses a challenge for the development of a coherent curriculum that is thorough and engaging. A national survey asking faculty how inorganic chemistry is taught at their institution showed that while there is no single course in inorganic chemistry, there are some core concepts that appear in most classes. In addition, cluster analysis allowed the description of several course "types" that share significant content. Building from the survey results, a "Grand Experiment" has been proposed for the development of inorganic	Barbara A. Reisner, James Madison University; Sheila R. Smith, University of Michigan, Dearborn; Jeffrey R. Raker, University of South Florida; Johanna L. Crane, University of Puget Sound; Sabrina G. Sobel, Hofstra University; Lester L. Pesterfield, Western Kentucky University
2.28				chemistry courses that improve the teaching of the core concepts, while maintaining the rich diversity of approaches.	
2.29	Beth Thacker	Texas Tech University, Physics	Promoting and Assessing Thinking Skills in a Laboratory-based Physics Course	We examined the results of free-response questions as part of a large-scale assessment of our introductory courses, including an analysis of thinking skills both qualitatively and with a rubric based on Bloom's taxonomy. We compare the results of students taught traditionally and non-traditionally. The non-traditionally taught students were enrolled in a hands-on, laboratory-based physics course taught without a lecture and without a text. Students worked through the materials developed for the course (1,2), doing experiments to explore the world around them and developing qualitative and quantitative models based on their experimentation. We discuss their thinking skills as evidenced on exams and homework compared to traditional classes. 1) National Science Foundation - Course, Curriculum and Laboratory Improvement grant CCLI-EMD #0088780, "Humanized Physics	
2.30	John Thompson	University of Maine, Physics	твр	TBD	TBD

	Jorge Torres	Miami University,	Characterizing the	Whereas the curricula of general and organic chemistry tend to be	Ellen Yezierski, Miami
	J. J	Chemistry	Structural Design of the	consistent across different institutions, recent studies have shown	University
			Inorganic Chemistry	that inorganic chemistry courses are largely varied, leading to large	-
			Curriculum	variations in students' inorganic chemistry background upon	
				completion of the chemistry degree. These studies prompt the need	
				to investigate why inorganic chemistry courses are so diverse and to	
				fully characterize the curriculum. Our project aims to determine	
				inorganic chemistry instructors' stated and assessed learning	
				objectives, how they design their curricula and assessments, and the	
				alignment between the stated and assessed learning objectives.	
				Inorganic chemistry faculty members were purposefully sampled on a	
				national level and the constant comparative method and multiple	
				curricular frameworks were used to analyze transcripts generated	
				from semi-structured interviews, as well as course syllabi and	
				assessments. Preliminary results indicate that although faculty	
				members are influenced by many of the same factors, these lead to	
				very different curricular and assessment decisions. This poster will	
				present the factors that influence the curricular decisions of inorganic	
				chemistry faculty and how these factors impact instruction.	
				Additionally, the poster addresses logistics and challenges	
2.31				associated with methods used for studying faculty nationally.	
	Sonia Underwoo	Florida	Developing assessments	Numerous calls and reports emphasize the importance for students	Scott, E.E. (Michigan State
		International	to characterize student	to develop a coherent understanding of science. But many studies	University), Mashood, K. K.
		University,	reasoning regarding	document that students emerge from science courses with	(Michigan State University),
		Chemistry	everyday phenomena	misconceptions and fragmented ideas, regardless of the science	Anderson, C. W. (Michigan
				discipline. In this project we are beginning to develop an	State University), Matz, R. L.
				understanding of how students connect and apply their knowledge	(Michigan State University),
				from three different science courses (chemistry, biology, and physics)	Sawtelle, V. D. (Michigan State
				to explain everyday phenomena. We investigated how students	University)
				integrate their knowledge from their science courses and the real	
				world to discuss various phenomena through semi-structured	
				interviews and free-response questions using the online program	
				beSocratic. This poster will highlight some of our preliminary findings	
2.32				from this project.	

	Kevin Watson	Virginia Tech, Mathematics	Student Understanding of Mathematical Norms and Normalization	Normalization of particular vectors from various vector spaces (e.g., R ^A n, C ^A n, function spaces, etc.) is mathematically important for a variety of contexts. Some examples are directional derivatives in multivariable calculus, states of quantum mechanical systems in Physics, and the development of orthonormal bases through the Gram-Schmidt process in Linear Algebra and Numerical Analysis. Despite the applicability of normalization to a wide variety of concepts within mathematics and science, students' understanding of norms and normalization has not been studied. Studies that have examined students' understanding of absolute value have come close to the topic of norms and normalization (e.g., Almog & llany, 2012; Sierpinska, Bobos, & Pruncut, 2011), but have not directly addressed them. With the wide applicability of normalization, this lack of research must be remedied. In this poster, I will present a preliminary framework for students' understanding of norms and normalization can give us greater insight into the reasons why students struggle or excel in using these concepts. Second, the framework could identify particular aspects of norms and normalization students need to grasp in order to have a robust	
2.33				understanding of these concepts.	